منابع مشابه
Microtubule dynamics.
Microtubules are highly dynamic and switch stochastically between growing and shrinking phases both in vivo and in vitro. This non-equilibrium behavior, known as dynamic instability, is based on the binding and hydrolysis of GTP at the nucleotide exchangeable site (E-site) in β-tubulin. Only dimers that have GTP in their E-site can polymerize (red tubulin subunits), but following polymerization...
متن کاملMicrotubule polymerization dynamics.
The polymerization dynamics of microtubules are central to their biological functions. Polymerization dynamics allow microtubules to adopt spatial arrangements that can change rapidly in response to cellular needs and, in some cases, to perform mechanical work. Microtubules utilize the energy of GTP hydrolysis to fuel a unique polymerization mechanism termed dynamic instability. In this review,...
متن کاملDynamics of Microtubule Instabilities.
We investigate an idealized model of microtubule dynamics that involves: (i) attachment of guanosine triphosphate (GTP) at rate λ, (ii) conversion of GTP to guanosine diphosphate (GDP) at rate 1, and (iii) detachment of GDP at rate μ. As a function of these rates, a microtubule can grow steadily or its length can fluctuate wildly. For μ = 0, we find the exact tubule and GTP cap length distribut...
متن کاملA microtubule dynamics reconstitutional convention
In vitro reconstitution is the fundamental test for identification of the core components of a biological process. In this issue, Moriwaki and Goshima (2016. J. Cell Biol. https://doi.org/10.1083/jcb.201604118) reconstitute all phases of microtubule dynamics through the inclusion of five key regulators and demonstrate that Polo kinase activity shifts the system from an interphase mode into an e...
متن کاملMicrotubule dynamics in neuronal morphogenesis
Microtubules (MTs) are essential for neuronal morphogenesis in the developing brain. The MT cytoskeleton provides physical support to shape the fine structure of neuronal processes. MT-based motors play important roles in nucleokinesis, process formation and retraction. Regulation of MT stability downstream of extracellular cues is proposed to be critical for axonogenesis. Axons and dendrites e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Cell Biology
سال: 2012
ISSN: 1465-7392,1476-4679
DOI: 10.1038/ncb2479